

Human / Robotic Hematopoietic Stem Cell Therapy and Gene Therapy for Exploration of the Solar System

Seigo Ohi, PhD

Assoc Prof, Depts of Biochem & Molec Biol, Genetics & Human Genetics, Pediatrics & CH, and Center for Sickle Cell Disease

Col of Medicine and Grad School

Howard University and Hospital, Washington, DC

Interplanetary Space Exploration:

- A) Readiness for catastrophic disorders:
 - Cancer
 - Immunodeficiency
 - Muscle and bone losses
 - Hematological and cardiac abnormalities
 - Neurological disorders
- B) Countermeasures:
 - Hematopoietic stem cell therapy (HSCT)
 - Gene therapy
 - Others
- C) Robotization; Robotic medicine

HEMATOPOIETIC STEM CELL THERAPY (HSCT)

GENE THERAPY

GENE THERAPY

FOR

- 1. GENETIC DISEASES e.g. Sickle Cell Disease, β-Thalassemia
- 2. ACQUIRED DISEASES e.g. <u>Cancer</u>, AIDS, <u>Space Anemia</u>

OUR AIM IS TO DEVELOP RECOMBINANT ADENO-ASSOCIATED VIRUSES THAT CONTAIN HUMAN GLOBIN GENES FOR GENE THERAPY OF HEMOGLOBINOPATHIES

POSSIBLE ADVANTAGES OF AAV SYSTEM OVER RETROVIRUS SYSTEM IN GENE THERAPY

- 1. AAV is a non-pathogen: gene therapy by in vivo infection.
- Two modes of infection:

 a) Lytic infection: transient expression
 b) Integrative infection: proviral expression.
- 3. Hardy virus:a) 60°C, 30 min.b) Purification by CsCl density gradient: high titer stock.
- 4. Broad host-range and tissue specificity.
- AAV infects non-dividing cells. Expression?
- 6. Gene therapy via nucleated cells (eg. nucleated RBC).

Possible Benefits of Gene Therapy

- Genetic engineering of astronauts for radiation resistance and other disorders
- Cancer therapy
 - Tumor suppressor genes
 - Multidrug resistant gene for high dose chemotherapy
- Hematological disorders
 - Low hemoglobin concentration (MCHC)
 - Erythropoietin production
- Muscle and bone losses
 - Growth hormones

PREVENTIVE MEDICINE based on human / robotic synergistic diagnosis and minor operations:

Hematopoietic Stem Cell Therapy and Gene Therapy

HUMAN/ROBOTIC HSCT AND GENE THERAPY FOR EXPLORATION OF THE SOLAR SYSTEM

SYNOPSIS

- 1. Long-duration space mission requires countermeasures against catastrophic disorders: cancer, bone & muscle losses, etc.
- 2. HSCT and GT could provide countermeasures/cures to these disorders.
- 3. Methods for purification and long-term culture of HSCs are established; research on AAV-mediated gene therapy is underway: *Ohi et al.*
- 4. To enable these treatments by crewmembers in space, the following procedures need to be established and automated/robotized:
- Robotic diagnosis of health status and prescription.
- Engineering of robotic HSC purification machine.
- Automated device for growing HSCs in low/0 G from the frozen state: Rf. Todd et al.

HUMAN/ROBOTIC HSCT AND GENE THERAPY FOR EXPLORATION OF THE SOLAR SYSTEM

SYNOPSIS-continued

- HSC delivery mechanisms:
 - a) Gastric resistant capsule form; automated packaging of HSCs in capsule.
 - b) Intravenous injection: development of *i.v.* injection machine.
- HSC therapy for muscle and bone losses: Ohi & Shapiro
 - a) Targeting of HSCs to the tissues.
 - b) Study of the effect of HSC therapy on muscle and bone losses, using rodent hind-limb suspension model.
- Establishment of *ex vivo* gene therapy protocols in space using a mouse model of β-thalassemia: *Ohi, Margolis, Fitsgerald et al.*
- Human clinical trials for HSC therapy and gene therapy in space.

